When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]

  3. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    Other names for the conjugate transpose of a matrix are Hermitian transpose, Hermitian conjugate, adjoint matrix or transjugate. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } can be denoted by any of these symbols:

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    The general form of an inner product on is known as the Hermitian form and is given by , = † = † ¯, where is any Hermitian positive-definite matrix and † is the conjugate transpose of . For the real case, this corresponds to the dot product of the results of directionally-different scaling of the two vectors, with positive scale factors ...

  5. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  6. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (⁠ † ⁠), so the equation above is written

  7. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    In finite dimensions where operators can be represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H {\displaystyle H} .

  8. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  9. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...