When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    This definition is technically called Q-convergence, short for quotient-convergence, and the rates and orders are called rates and orders of Q-convergence when that technical specificity is needed. § R-convergence , below, is an appropriate alternative when this limit does not exist.

  3. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...

  4. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    with = a small change of in the j direction, and () = the corresponding rate of change in the probability distribution. Since relative entropy has an absolute minimum 0 for P = Q {\displaystyle P=Q} , i.e. θ = θ 0 {\displaystyle \theta =\theta _{0}} , it changes only to second order in the small parameters Δ θ j {\displaystyle \Delta \theta ...

  5. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    Convergence in total variation is stronger than weak convergence. An important example of a log-concave density is a function constant inside a given convex body and vanishing outside; it corresponds to the uniform distribution on the convex body, which explains the term "central limit theorem for convex bodies".

  6. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    The rate of convergence is linear, except for r = 3, when it is dramatically slow, less than linear (see Bifurcation memory). When the parameter 2 < r < 3, except for the initial values 0 and 1, the fixed point = / is the same as when 1 < r ≤ 2. However, in this case the convergence is not monotonically.

  7. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.

  8. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    This expression asserts the pointwise convergence of the empirical distribution function to the true cumulative distribution function. There is a stronger result, called the Glivenko–Cantelli theorem, which states that the convergence in fact happens uniformly over t: [5]

  9. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    On the right-hand side, the first term converges to zero as n → ∞ for any fixed δ, by the definition of convergence in probability of the sequence {X n}. The second term converges to zero as δ → 0, since the set B δ shrinks to an empty set. And the last term is identically equal to zero by assumption of the theorem.