Search results
Results From The WOW.Com Content Network
A practical method to calculate the order of convergence for a sequence ... the rate of convergence and order of ... define discrete time autonomous ...
The rate of convergence is linear, except for r = 3, when it is dramatically slow, less than linear (see Bifurcation memory). When the parameter 2 < r < 3, except for the initial values 0 and 1, the fixed point = / is the same as when 1 < r ≤ 2. However, in this case the convergence is not monotonically.
The different possible notions of convergence relate to how such a behavior can be characterized: two readily understood behaviors are that the sequence eventually takes a constant value, and that values in the sequence continue to change but can be described by an unchanging probability distribution.
with = a small change of in the j direction, and () = the corresponding rate of change in the probability distribution. Since relative entropy has an absolute minimum 0 for P = Q {\displaystyle P=Q} , i.e. θ = θ 0 {\displaystyle \theta =\theta _{0}} , it changes only to second order in the small parameters Δ θ j {\displaystyle \Delta \theta ...
The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f ( x ) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically.
This expression asserts the pointwise convergence of the empirical distribution function to the true cumulative distribution function. There is a stronger result, called the Glivenko–Cantelli theorem, which states that the convergence in fact happens uniformly over t: [5]
In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value = (). In essence, given the value of A ( h ) {\displaystyle A(h)} for several values of h {\displaystyle h} , we can estimate A ∗ {\displaystyle A^{\ast }} by extrapolating the ...
Stein's method is a general method in probability theory to obtain bounds on the distance between two probability distributions with respect to a probability metric.It was introduced by Charles Stein, who first published it in 1972, [1] to obtain a bound between the distribution of a sum of -dependent sequence of random variables and a standard normal distribution in the Kolmogorov (uniform ...