Search results
Results From The WOW.Com Content Network
The optimized gradient method (OGM) [26] reduces that constant by a factor of two and is an optimal first-order method for large-scale problems. [27] For constrained or non-smooth problems, Nesterov's FGM is called the fast proximal gradient method (FPGM), an acceleration of the proximal gradient method.
In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.
Proximal gradient methods are applicable in a wide variety of scenarios for solving convex optimization problems of the form + (),where is convex and differentiable with Lipschitz continuous gradient, is a convex, lower semicontinuous function which is possibly nondifferentiable, and is some set, typically a Hilbert space.
The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...
Here is an example gradient method that uses a line search in step 5: Set iteration counter k = 0 {\displaystyle k=0} and make an initial guess x 0 {\displaystyle \mathbf {x} _{0}} for the minimum.
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is a matrix-free method for ... [55] The latter approach has been later implemented in Python ...
It has similarities with Quasi-Newton methods. Conditional gradient method (Frank–Wolfe) for approximate minimization of specially structured problems with linear constraints, especially with traffic networks. For general unconstrained problems, this method reduces to the gradient method, which is regarded as obsolete (for almost all problems).
To obtain the optimal solution with minimum computation and time, the problem is solved iteratively where in each iteration the solution moves closer to the optimum solution. Such methods are known as ‘numerical optimization’, ‘simulation-based optimization’ [ 1 ] or 'simulation-based multi-objective optimization' used when more than ...