Search results
Results From The WOW.Com Content Network
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the protasis. [1] Examples: If , then . This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q.
For example, the first-order formula "if x is a philosopher, then x is a scholar", is a conditional statement with "x is a philosopher" as its hypothesis, and "x is a scholar" as its conclusion, which again needs specification of x in order to have a definite truth value. Quantifiers can be applied to variables in a formula.
The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or ...
A mixed hypothetical syllogism has two premises: one conditional statement and one statement that either affirms or denies the antecedent or consequent of that conditional statement. For example, If P, then Q. P. ∴ Q. In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent.
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
An example traditionally used by logicians contrasting sufficient and necessary conditions is the statement "If there is fire, then oxygen is present". An oxygenated environment is necessary for fire or combustion, but simply because there is an oxygenated environment does not necessarily mean that fire or combustion is occurring.
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q , or the falsity of Q ensures the falsity of P .) [ 1 ] Similarly, P is sufficient for Q , because P being true always implies that Q is true, but P not being ...