When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem ), which proves the existence of a particular kind of object ...

  3. Constructivism (philosophy of mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constructivism_(philosophy...

    In classical real analysis, one way to define a real number is as an equivalence class of Cauchy sequences of rational numbers.. In constructive mathematics, one way to construct a real number is as a function ƒ that takes a positive integer and outputs a rational ƒ(n), together with a function g that takes a positive integer n and outputs a positive integer g(n) such that

  4. Intuitionistic logic - Wikipedia

    en.wikipedia.org/wiki/Intuitionistic_logic

    From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do ...

  5. Existence theorem - Wikipedia

    en.wikipedia.org/wiki/Existence_theorem

    From the other direction, there has been considerable clarification of what constructive mathematics is—without the emergence of a 'master theory'. For example, according to Errett Bishop's definitions, the continuity of a function such as sin(x) should be proved as a constructive bound on the modulus of continuity, meaning that the existential content of the assertion of continuity is a ...

  6. Mathematical logic - Wikipedia

    en.wikipedia.org/wiki/Mathematical_logic

    proof theory and constructive mathematics (considered as parts of a single area). Additionally, sometimes the field of computational complexity theory is also included together with mathematical logic. [2] [3] Each area has a distinct focus, although many techniques and results are shared among multiple areas. The borderlines amongst these ...

  7. Intuitionism - Wikipedia

    en.wikipedia.org/wiki/Intuitionism

    The fundamental distinguishing characteristic of intuitionism is its interpretation of what it means for a mathematical statement to be true. In Brouwer's original intuitionism, the truth of a mathematical statement is a subjective claim: a mathematical statement corresponds to a mental construction, and a mathematician can assert the truth of a statement only by verifying the validity of that ...

  8. Intuitionistic type theory - Wikipedia

    en.wikipedia.org/wiki/Intuitionistic_type_theory

    Intuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory (MLTT)) is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf , a Swedish mathematician and philosopher , who first published it in 1972.

  9. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.