When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.

  3. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The difference between two vectors u and v can be represented in either of the following fashions: + Scalar division is performed by multiplying the vector operand with the multiplicative inverse of the scalar operand. This can be represented by the use of the fraction bar or division signs as operators.

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    In this article, vectors are represented in boldface to distinguish them from scalars. [nb 1] [1] A vector space over a field F is a non-empty set V together with a binary operation and a binary function that satisfy the eight axioms listed below. In this context, the elements of V are commonly called vectors, and the elements of F are called ...

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms .

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    If the dot product of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself).

  7. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In what follows we will distinguish scalars, vectors and matrices by their typeface. We will let M(n,m) denote the space of real n×m matrices with n rows and m columns. Such matrices will be denoted using bold capital letters: A, X, Y, etc. An element of M(n,1), that is, a column vector, is denoted with a boldface lowercase letter: a, x, y, etc.

  8. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  9. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    The fundamental difference is that GA provides a new product of vectors called the "geometric product". Elements of GA are graded multivectors: scalars are grade 0, usual vectors are grade 1, bivectors are grade 2 and the highest grade (3 in the 3D case) is traditionally called the pseudoscalar and designated .