Search results
Results From The WOW.Com Content Network
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely.
The rational root test allows finding q and p by examining a finite number of cases (because q must be a divisor of a, and p must be a divisor of d). Thus, one root is =, and the other roots are the roots of the other factor, which can be found by polynomial long division.
The previous example involved an indicial polynomial with a repeated root, which gives only one solution to the given differential equation. In general, the Frobenius method gives two independent solutions provided that the indicial equation's roots are not separated by an integer (including zero).
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
That is, to compute each partial quotient a i (that is, to locate where the roots lie on the x-axis) Vincent uses Budan's theorem as a "no roots test"; in other words, to find the integer part of a root Vincent performs successive substitutions of the form x ← x+1 and stops only when the polynomials p(x) and p(x+1) differ in the number of ...