Search results
Results From The WOW.Com Content Network
Comparison of some RGB and CMYK color gamuts on a CIE 1931 xy chromaticity diagram. Comparisons between RGB displays and CMYK prints can be difficult, since the color reproduction technologies and properties are very different. A computer monitor mixes shades of red, green, and blue light to create color images.
In the RGB model, hues are represented by specifying one color as full intensity (255), a second color with a variable intensity, and the third color with no intensity (0). The following provides some examples using red as the full-intensity and green as the partial-intensity colors; blue is always zero:
This image demonstrates the difference between how colors will look on a computer monitor (RGB) compared to how they might reproduce in a particular CMYK print process. Colors can be created in printing with color spaces based on the CMYK color model, using the subtractive primary colors of pigment (cyan, magenta, yellow, and black).
It is able to store a wider range of color values than sRGB. The Wide Gamut color space is an expanded version of the Adobe RGB color space, developed in 1998. As a comparison, the Adobe Wide Gamut RGB color space encompasses 77.6% of the visible colors specified by the Lab color space, whilst the standard Adobe RGB color space covers just 50.6%.
RGB is a device-dependent color model: different devices detect or reproduce a given RGB value differently, since the color elements (such as phosphors or dyes) and their response to the individual red, green, and blue levels vary from manufacturer to manufacturer, or even in the same device over time.
Unlike the RGB and CMYK color models, CIELAB is designed to approximate human vision. The L* component closely matches human perception of lightness, though it does not take the Helmholtz–Kohlrausch effect into account. CIELAB is less uniform in the color axes, but is useful for predicting small differences in color.
While processing a digital image, the most convenient color model used is the RGB model. Printing the image requires transforming the image from the original RGB color model to the printer's CMYK color model. During this process, the colors from the RGB model which are out of gamut must be somehow converted to approximate values within the CMYK ...
This so-called gamut mismatch occurs for example, when we translate from the RGB color space with a wider gamut into the CMYK color space with a narrower gamut range. In this example, the dark highly saturated purplish-blue color of a typical computer monitor's "blue" primary is impossible to print on paper with a typical CMYK printer. The ...