Search results
Results From The WOW.Com Content Network
The scale of dBZ values can be seen along the bottom of the image. dBZ is a logarithmic dimensionless technical unit used in radar. It is mostly used in weather radar, to compare the equivalent reflectivity factor (Z) of a remote object (in mm 6 per m 3) to the return of a droplet of rain with a diameter of 1 mm (1 mm 6 per m 3). [1]
Reflective array 'billboard' antenna of the SCR-270 radar, an early US Army radar system. It consists of 32 horizontal half wave dipoles mounted in front of a 17 m (55 ft) high screen reflector. With an operating frequency of 106 MHz and a wavelength of 3 m (10 ft) this large antenna was required to generate a sufficiently narrow beamwidth to ...
A corner reflector for radar testing. A corner reflector is a retroreflector consisting of three mutually perpendicular, intersecting flat reflective surfaces. It reflects waves incident from any direction directly towards the source, but translated.
The scattering of incident radar power by a radar target is never isotropic (even for a spherical target), and the RCS is a hypothetical area. In this light, RCS can be viewed as a correction factor that makes the radar equation "work out right" for the experimentally observed ratio of /. However, RCS is a property of the target alone and may ...
In the United States NEXRAD network some of these angles are .5, 1.45, 2.4, and 3.35 degrees with the radar having up to 14 angles when it is in Severe Mode. [ 1 ] [ 2 ] In the composite reflectivity product, the highest intensities among those available on the different angles above each point in the image will be displayed.
Backscattering is the principle behind radar systems. In weather radar, backscattering is proportional to the 6th power of the diameter of the target multiplied by its inherent reflective properties, provided the wavelength is larger than the particle diameter (Rayleigh scattering). Water is almost 4 times more reflective than ice but droplets ...
Imaging radar is an application of radar which is used to create two-dimensional images, typically of landscapes. Imaging radar provides its light to illuminate an area on the ground and take a picture at radio wavelengths. It uses an antenna and digital computer storage to record its images.
Radar echoes, showing a representation of the carrier. Pulse width also determines the radar's dead zone at close ranges. While the radar transmitter is active, the receiver input is blanked to avoid the amplifiers being swamped (saturated) or, (more likely), damaged.