Ads
related to: fluorescence imaging in vivo- iBright Analysis Software
User-focused analysis software.
Desktop and cloud-based versions.
- Find Citations
View reference articles
organized by research areas.
- Examine Features
Discover our suite of features.
Learn about the benefits of iBright
- iBright Imaging Systems
Find which model is right for you.
iBright CL750, CL1500, or FL1500.
- iBright Analysis Software
Search results
Results From The WOW.Com Content Network
Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes ... in vivo, or by producing mutations. [10] Limited ...
Two-photon excitation microscopy of mouse intestine.Red: actin.Green: cell nuclei.Blue: mucus of goblet cells.Obtained at 780 nm using a Ti-sapphire laser.. Two-photon excitation microscopy (TPEF or 2PEF) is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness.
Not fluorescent by itself, it can bind selectively a fluorogenic chromophore derived from 4-hydroxybenzylidene rhodanine, which is itself non fluorescent unless bound. Once bound, the pair of molecules goes through a unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption ...
High quality of modern microscopes and imaging software also permits subcellular imaging in live animals that in turn allows studying cell biology at molecular level in vivo. Advancements in fluorescent protein technology and genetic tools that enable controlled expression of a given gene at a specific time in a tissue of interest also played ...
The paper used three-photon fluorescence microscopy at a spectral excitation window of 1,320 nm to imaging the mouse brain structure and function through the intact skull with high spatial and temporal resolution(The lateral and axial FWHM was 0.96μm and 4.6μm) and large FOVs (hundreds of micrometers), and at substantial depth(>500 μm). This ...
Live-cell imaging is the study of living cells using time-lapse microscopy. It is used by scientists to obtain a better understanding of biological function through the study of cellular dynamics. [1] Live-cell imaging was pioneered in the first decade of the 21st century.
Fluorescence-lifetime imaging microscopy or FLIM is an imaging technique based on the differences in the exponential decay rate of the photon emission of a fluorophore from a sample. It can be used as an imaging technique in confocal microscopy , two-photon excitation microscopy , and multiphoton tomography.
[16] [30] Video-rate imaging not only reduces motion artifacts, but also allows in vivo study of biological processes, even in hand-held mode. It also gives the operator real-time feedback essential for orientation and fast localization of areas of interest. [2] Fig. 3: Five-dimensional imaging of mouse brain perfusion in vivo. (a) Layout of ...