When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω( n ) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS ).

  3. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    But when + is not prime, the first factor becomes zero and the formula produces the prime number 2. [1] This formula is not an efficient way to generate prime numbers because evaluating n ! mod ( n + 1 ) {\displaystyle n!{\bmod {(}}n+1)} requires about n − 1 {\displaystyle n-1} multiplications and reductions modulo n + 1 {\displaystyle n+1} .

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A cluster prime is a prime p such that every even natural number k ≤ p − 3 is the difference of two primes not exceeding p. 3, 5, 7, 11, 13, 17, 19, 23, ... (OEIS: A038134) All odd primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are: 2, 97, 127, 149, 191, 211, 223, 227, 229, 251.

  5. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...

  6. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

  7. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    64 21 10080 5,2,1,1 9 ... Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a ...

  8. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  9. 64 (number) - Wikipedia

    en.wikipedia.org/wiki/64_(number)

    The aliquot sum of a power of two (2 n) is always one less than the power of two itself, therefore the aliquot sum of 64 is 63, within an aliquot sequence of two composite members (64, 63, 41, 1, 0) that are rooted in the aliquot tree of the thirteenth prime, 41. [2] 64 is: the smallest number with exactly seven divisors, [3]