Search results
Results From The WOW.Com Content Network
The Robertson–Seymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]
An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.
A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good
A minor or subcontraction of a graph is any graph obtained by taking a subgraph and contracting some (or no) edges. Many graph properties are hereditary for minors, which means that a graph has a property if and only if all minors have it too. For example, Wagner's Theorem states: A graph is planar if it contains as a minor neither the complete ...
Printable version; In other projects ... Pages in category "Graph minor theory" The following 33 pages are in this category, out of 33 total. ... Robertson–Seymour ...
In 1993, with Seymour and Robin Thomas, Robertson proved the -free case for which the Hadwiger conjecture relating graph coloring to graph minors is known to be true. [ 8 ] In 1996, Robertson, Seymour, Thomas, and Daniel P. Sanders published a new proof of the four color theorem , [ 9 ] confirming the Appel–Haken proof which until then had ...
Graph minor Wagner's theorem: Outerplanar graphs: K 4 and K 2,3: Graph minor Diestel (2000), [1] p. 107: Outer 1-planar graphs: Six forbidden minors Graph minor Auer et al. (2013) [2] Graphs of fixed genus: A finite obstruction set Graph minor Diestel (2000), [1] p. 275: Apex graphs: A finite obstruction set Graph minor [3] Linklessly ...
In mathematics, a simple subcubic graph (SSCG) is a finite simple graph in which each vertex has a degree of at most three. Suppose we have a sequence of simple subcubic graphs G 1, G 2, ... such that each graph G i has at most i + k vertices (for some integer k) and for no i < j is G i homeomorphically embeddable into (i.e. is a graph minor of) G j.