Ad
related to: domain algebra 2 definition
Search results
Results From The WOW.Com Content Network
The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...
(In old texts, such a domain was called the domain of definition of the function.) Functions can be classified by the nature of formulas that define them: A quadratic function is a function that may be written f ( x ) = a x 2 + b x + c , {\displaystyle f(x)=ax^{2}+bx+c,} where a , b , c are constants .
Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain. [1] [2] Mathematical literature contains multiple variants of the definition of "domain". [3]
In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.
Define f (a + bi) = a 2 + b 2, the norm of the Gaussian integer a + bi. Z[ω] (where ω is a primitive (non-real) cube root of unity), the ring of Eisenstein integers. Define f (a + bω) = a 2 − ab + b 2, the norm of the Eisenstein integer a + bω. K[X], the ring of polynomials over a field K. For each nonzero polynomial P, define f (P) to be ...
with domain, the range of , sometimes denoted or (), [4] may refer to the codomain or target set (i.e., the set into which all of the output of is constrained to fall), or to (), the image of the domain of under (i.e., the subset of consisting of all actual outputs of ). The image of a function is always a subset of the codomain of the ...
Algebra is often understood as a generalization of arithmetic. [8] Arithmetic studies operations like addition, subtraction, multiplication, and division, in a particular domain of numbers, such as the real numbers. [9] Elementary algebra constitutes the first level of abstraction. Like arithmetic, it restricts itself to specific types of ...
An integral domain is a UFD if and only if it is a GCD domain (i.e., a domain where every two elements have a greatest common divisor) satisfying the ascending chain condition on principal ideals. An integral domain is a Bézout domain if and only if any two elements in it have a gcd that is a linear combination of the two.