Ads
related to: solving probability problems in excel worksheet solutions 6th
Search results
Results From The WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
Konopasek's goal in inventing the TK Solver concept was to create a problem solving environment in which a given mathematical model built to solve a specific problem could be used to solve related problems (with a redistribution of input and output variables) with minimal or no additional programming required: once a user enters an equation, TK ...
Lis is a scalable parallel library for solving systems of linear equations and eigenvalue problems using iterative methods. Intel MKL (Math Kernel Library) contains optimized math routines for science, engineering, and financial applications, and is written in C/C++ and Fortran. Core math functions include BLAS, LAPACK, ScaLAPACK, sparse ...
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
In a typical 6/49 game, each player chooses six distinct numbers from a range of 1–49. If the six numbers on a ticket match the numbers drawn by the lottery, the ticket holder is a jackpot winner—regardless of the order of the numbers.
The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value .