Ads
related to: beta vs parallel pleated sheets
Search results
Results From The WOW.Com Content Network
Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone hydrogen bonds, forming a generally twisted, pleated sheet. A β-strand is a stretch of polypeptide chain typically 3 to 10 amino acids long with backbone in an extended conformation .
E = extended strand in parallel and/or anti-parallel β-sheet conformation. Min length 2 residues. B = residue in isolated β-bridge (single pair β-sheet hydrogen bond formation) S = bend (the only non-hydrogen-bond based assignment). C = coil (residues which are not in any of the above conformations).
All-β proteins are a class of structural domains in which the secondary structure is composed entirely of β-sheets, with the possible exception of a few isolated α-helices on the periphery. Common examples include the SH3 domain , the beta-propeller domain , the immunoglobulin fold and B3 DNA binding domain .
The β pleated sheet is a structure that forms with the backbone bending over itself to form the hydrogen bonds (as displayed in the figure to the left). The hydrogen bonds are between the amide hydrogen and carbonyl oxygen of the peptide bond. There exists anti-parallel β pleated sheets and parallel β pleated sheets where the stability of ...
The beta strands are parallel, and the helix is also almost parallel to the strands. This structure can be seen in almost all proteins with parallel strands. The loops connecting the beta strands and alpha helix can vary in length and often binds ligands. Beta-alpha-beta helices can be either left-handed or right-handed.
Beta-sandwich or β-sandwich domains consisting of 80 to 350 amino acids occur commonly in proteins. They are characterized by two opposing antiparallel beta sheets (β-sheets). [ 1 ] The number of strands found in such domains may differ from one protein to another. β-sandwich domains are subdivided in a variety of different folds.
A piece of paper can be formed into a cylinder by bringing opposite sides together. The two edges come together to form a line. Shear can be created by sliding the two edges parallel to that line. Likewise, a beta barrel can be formed by bringing the edges of a beta sheet together to form a cylinder. If those edges are displaced, shear is created.
The immunoglobulin domain, also known as the immunoglobulin fold, is a type of protein domain that consists of a 2-layer sandwich of 7-9 antiparallel β-strands arranged in two β-sheets with a Greek key topology, [1] [2] consisting of about 125 amino acids. The backbone switches repeatedly between the two β