When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Antiparallel (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Antiparallel_(biochemistry)

    Antiparallel and parallel beta sheet. Many proteins may adopt a beta sheet as part of their secondary structure. In beta sheets, sections of a single polypeptide may run side-by-side and antiparallel to each other, to allow for hydrogen bonding between their backbone chains. Beta sheets can also be either a parallel or anti-parallel secondary ...

  3. Beta sheet - Wikipedia

    en.wikipedia.org/wiki/Beta_sheet

    Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone hydrogen bonds, forming a generally twisted, pleated sheet. A β-strand is a stretch of polypeptide chain typically 3 to 10 amino acids long with backbone in an extended conformation .

  4. Protein contact map - Wikipedia

    en.wikipedia.org/wiki/Protein_contact_map

    Secondary structure elements in HB plot, there is swapped parallel and anti-parallel sheets. In representations of the HB plot, characteristic patterns of secondary structure elements can be recognised easily, as follows: Helices can be identified as strips directly adjacent to the diagonal. Antiparallel beta sheets appear in HB plot as cross ...

  5. Protein secondary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_secondary_structure

    E = extended strand in parallel and/or anti-parallel β-sheet conformation. Min length 2 residues. B = residue in isolated β-bridge (single pair β-sheet hydrogen bond formation) S = bend (the only non-hydrogen-bond based assignment). C = coil (residues which are not in any of the above conformations).

  6. Amyloid - Wikipedia

    en.wikipedia.org/wiki/Amyloid

    There are eight theoretical classes of steric-zipper interfaces, dictated by the directionality of the β-sheets (parallel and anti-parallel) and symmetry between adjacent β-sheets. A limitation of X-ray crystallography for solving amyloid structure is represented by the need to form microcrystals, which can be achieved only with peptides ...

  7. Supersecondary structure - Wikipedia

    en.wikipedia.org/wiki/Supersecondary_structure

    A beta hairpin is a common supersecondary motif composed of two anti-parallel beta strands connected by a loop. The structure resembles a hairpin and is often found in globular proteins. The loop between the beta strands can range anywhere from 2 to 16 residues. However, most loops contain less than seven residues. [2]

  8. Beta-propeller - Wikipedia

    en.wikipedia.org/wiki/Beta-propeller

    The beta-propeller structure is stabilized mainly through hydrophobic interactions of the beta-sheets, while additional stability may come from hydrogen bonds formed between the beta-sheets of the C- and N-terminal ends. In effect this closes the circle which can occur even more strongly in 4-bladed proteins via a disulfide bond. [2]

  9. Beta barrel - Wikipedia

    en.wikipedia.org/wiki/Beta_barrel

    All beta-barrels can be classified in terms of two integer parameters: the number of strands in the beta-sheet, n, and the "shear number", S, a measure of the stagger of the strands in the beta-sheet. [3] These two parameters (n and S) are related to the inclination angle of the beta strands relative to the axis of the barrel. [4] [5] [6]