Search results
Results From The WOW.Com Content Network
The generating function F for this transformation is of the third kind, = (,). To find F explicitly, use the equation for its derivative from the table above, =, and substitute the expression for P from equation , expressed in terms of p and Q:
An example where convolutions of generating functions are useful allows us to solve for a specific closed-form function representing the ordinary generating function for the Catalan numbers, C n. In particular, this sequence has the combinatorial interpretation as being the number of ways to insert parentheses into the product x 0 · x 1 ·⋯ ...
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Example of a Key Derivation Function chain as used in the Signal Protocol.The output of one KDF function is the input to the next KDF function in the chain. In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a ...
Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.
The PBKDF2 key derivation function has five input parameters: [9] DK = PBKDF2(PRF, Password, Salt, c, dkLen) where: PRF is a pseudorandom function of two parameters with output length hLen (e.g., a keyed HMAC) Password is the master password from which a derived key is generated; Salt is a sequence of bits, known as a cryptographic salt
Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: If , =,,, is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and