When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  3. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    This definition also applies unchanged to left modules and to vector spaces. [10] The definition of the transpose may be seen to be independent of any bilinear form on the modules, unlike the adjoint . The continuous dual space of a topological vector space (TVS) X is denoted by X '.

  4. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  5. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.

  6. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    The vector space of ⁠ ⁠ matrices over ⁠ ⁠ is denoted by ⁠ ⁠. For ⁠ A ∈ K m × n {\displaystyle A\in \mathbb {K} ^{m\times n}} ⁠ , the transpose is denoted ⁠ A T {\displaystyle A^{\mathsf {T}}} ⁠ and the Hermitian transpose (also called conjugate transpose ) is denoted ⁠ A ∗ {\displaystyle A^{*}} ⁠ .

  7. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...

  8. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    As exchanging the indices of an array is the essence of array transposition, an array stored as row-major but read as column-major (or vice versa) will appear transposed. As actually performing this rearrangement in memory is typically an expensive operation, some systems provide options to specify individual matrices as being stored transposed.

  9. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).