When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    It follows from Carathéodory's principle that quantity of energy quasi-statically transferred as heat is a holonomic process function, in other words, =. [ 50 ] Though it is almost customary in textbooks to say that Carathéodory's principle expresses the second law and to treat it as equivalent to the Clausius or to the Kelvin-Planck ...

  3. Mechanical equivalent of heat - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equivalent_of_heat

    In the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally converted to heat energy. The mechanical equivalent of heat was a concept that had an important part in the ...

  4. Heat of combustion - Wikipedia

    en.wikipedia.org/wiki/Heat_of_combustion

    Another definition of the LHV is the amount of heat released when the products are cooled to 150 °C (302 °F). This means that the latent heat of vaporization of water and other reaction products is not recovered. It is useful in comparing fuels where condensation of the combustion products is impractical, or heat at a temperature below 150 ...

  5. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    An equivalent statement is that perpetual motion machines of the first kind are impossible; work done by a system on its surroundings requires that the system's internal energy be consumed, so that the amount of internal energy lost by that work must be resupplied as heat by an external energy source or as work by an external machine acting on ...

  6. Thermal energy - Wikipedia

    en.wikipedia.org/wiki/Thermal_energy

    [3] [4] Heat refers to a quantity in transfer between systems, not to a property of any one system, or "contained" within it; on the other hand, internal energy and enthalpy are properties of a single system. Heat and work depend on the way in which an energy transfer occurs.

  7. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    Another example involving thermochemical equations is that when methane gas is combusted, heat is released, making the reaction exothermic. In the process, 890.4 kJ of heat is released per mole of reactants, so the heat is written as a product of the reaction.

  8. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    This creates a limit to the amount of heat energy that can do work in a cyclic process, a limit called the available energy. Mechanical and other forms of energy can be transformed in the other direction into thermal energy without such limitations. [14] The total energy of a system can be calculated by adding up all forms of energy in the system.

  9. Exothermic reaction - Wikipedia

    en.wikipedia.org/wiki/Exothermic_reaction

    The enthalpy of a chemical system is essentially its energy. The enthalpy change ΔH for a reaction is equal to the heat q transferred out of (or into) a closed system at constant pressure without in- or output of electrical energy. Heat production or absorption in a chemical reaction is measured using calorimetry, e.g. with a bomb calorimeter.