Search results
Results From The WOW.Com Content Network
For example, both a 5 stage in-order pipeline and a large out of order CPU implement the same assembly language execution model. The execution model is the definition of the behavior, so all implementations, whether in-order or out-of-order or interpreted or JIT'd etc.. must all give the exact same result, and that result is defined by the ...
For example, the behavior of calls to the POSIX thread library cannot be understood in terms of the C language. The reason is that the call invokes an execution model that is different from the execution model of the language. This invocation of an outside execution model is the defining characteristic of a programming model, in contrast to a ...
Single instruction, multiple threads (SIMT) is an execution model used in parallel computing where single instruction, multiple data (SIMD) is combined with multithreading. It is different from SPMD in that all instructions in all "threads" are executed in lock-step.
The implementation of the language's execution model tracks which operations are free to execute and chooses the order independently. More at Comparison of multi-paradigm programming languages. In object-oriented programming, code is organized into objects that contain state that is owned by and (usually) controlled by the code of the object ...
In computing, POSIX Threads, commonly known as pthreads, is an execution model that exists independently from a programming language, as well as a parallel execution model. It allows a program to control multiple different flows of work that overlap in time.
As an extreme example, the physical CPU itself can be viewed as an implementation of the runtime system of a specific assembly language. In this view, the execution model is implemented by the physical CPU and memory systems. As an analogy, runtime systems for higher-level languages are themselves implemented using some other languages.
Execution in computer and software engineering is the process by which a computer or virtual machine interprets and acts on the instructions of a computer program. Each instruction of a program is a description of a particular action which must be carried out, in order for a specific problem to be solved.
In the execution example, execution (a) is fair, since in its final state no receive action is enabled. Execution (b) is finite, yet a receive action is enabled in its final state. Therefore, execution (b) is not fair. Execution (c) is infinite, does not contain receive events, and at all points after the first step, receive actions are enabled.