When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.

  3. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    The definition of entropy is central to the establishment of the second law of thermodynamics, which states that the entropy of isolated systems cannot decrease with time, as they always tend to arrive at a state of thermodynamic equilibrium, where the entropy is highest. Entropy is therefore also considered to be a measure of disorder in the ...

  4. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    The entropy of a closed system, determined relative to this zero point, is then the absolute entropy of that system. Mathematically, the absolute entropy of any system at zero temperature is the natural log of the number of ground states times the Boltzmann constant k B = 1.38 × 10 −23 J K −1.

  5. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The entropy of the surrounding room decreases less than the entropy of the ice and water increases: the room temperature of 298 K is larger than 273 K and therefore the ratio, (entropy change), of ⁠ δQ / 298 K ⁠ for the surroundings is smaller than the ratio (entropy change), of ⁠ δQ / 273 K ⁠ for the ice and water system. This is ...

  6. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  7. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  8. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...

  9. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    In this diagram, one can calculate the entropy change ΔS for the passage of the quantity of heat Q from the temperature T 1, through the "working body" of fluid (see heat engine), which was typically a body of steam, to the temperature T 2. Moreover, one could assume, for the sake of argument, that the working body contains only two molecules ...