When.com Web Search

  1. Ads

    related to: parameters in large language models course outline examples

Search results

  1. Results From The WOW.Com Content Network
  2. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. The largest and most capable LLMs are generative pretrained transformers (GPTs).

  3. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models.

  4. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.

  5. Llama (language model) - Wikipedia

    en.wikipedia.org/wiki/Llama_(language_model)

    Llama (Large Language Model Meta AI, formerly stylized as LLaMA) is a family of large language models (LLMs) released by Meta AI starting in February 2023. [2] [3] The latest version is Llama 3.3, released in December 2024. [4] Llama models are trained at different parameter sizes, ranging between 1B and 405B. [5]

  6. Principles and parameters - Wikipedia

    en.wikipedia.org/wiki/Principles_and_parameters

    Principles and parameters is a framework within generative linguistics in which the syntax of a natural language is described in accordance with general principles (i.e. abstract rules or grammars) and specific parameters (i.e. markers, switches) that for particular languages are either turned on or off.

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  1. Ad

    related to: parameters in large language models course outline examples