When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)

  3. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The roots of the quadratic function y = ⁠ 1 / 2 ⁠ x 2 − 3x + ⁠ 5 / 2 ⁠ are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  4. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement. It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1.

  5. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Completing the square is the oldest method of solving general quadratic equations, used in Old Babylonian clay tablets dating from 1800–1600 BCE, and is still taught in elementary algebra courses today.

  6. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    The roots of a polynomial expression of degree n, or equivalently the solutions of a polynomial equation, can always be written as algebraic expressions if n < 5 (see quadratic formula, cubic function, and quartic equation). Such a solution of an equation is called an algebraic solution.

  7. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    If <, then the equation = + + describes either a circle or other ellipse or nothing at all. If the ordinate of the maximum point of the corresponding parabola y p = a x 2 + b x + c {\displaystyle y_{p}=ax^{2}+bx+c} is positive, then its square root describes an ellipse, but if the ordinate is negative then it describes an empty locus of points.

  8. Orthoptic (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orthoptic_(geometry)

    If a tangent contains the point (x 0, y 0), off the parabola, then the equation = + = holds, which has two solutions m 1 and m 2 corresponding to the two tangents passing (x 0, y 0). The free term of a reduced quadratic equation is always the product of its solutions.

  9. Evolute - Wikipedia

    en.wikipedia.org/wiki/Evolute

    From this equation one gets the following properties of the evolute: At points with ′ = the evolute is not regular. That means: at points with maximal or minimal curvature (vertices of the given curve) the evolute has cusps. (See the diagrams of the evolutes of the parabola, the ellipse, the cycloid and the nephroid.)