Search results
Results From The WOW.Com Content Network
The equilibrium constant for a full redox reaction can be obtained from the standard redox potentials of the constituent half-reactions. At equilibrium the potential for the two half-reactions must be equal to each other and, of course, the number of electrons exchanged must be the same in the two half reactions. [32]
However, all reactions can be represented as a series of elementary reactions and, if the mechanism is known in detail, the rate equation for each individual step is given by the expression so that the overall rate equation can be derived from the individual steps. When this is done the equilibrium constant is obtained correctly from the rate ...
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y-axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
Chemical clock reactions such as the Belousov–Zhabotinsky reaction demonstrate that component concentrations can oscillate for a long time before finally attaining the equilibrium. Free energy In general terms, the free energy change (ΔG) of a reaction determines whether a chemical change will take place, but kinetics describes how fast the ...
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
relating the equilibrium constant, , for a given equilibrium reaction with substituent R and the reference constant when R is a hydrogen atom to the substituent constant σ which depends only on the specific substituent R and the reaction rate constant ρ which depends only on the type of reaction but not on the substituent used.
The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed]
Combining expressions for the Gibbs–Duhem equation in each phase and assuming systematic equilibrium (i.e. that the temperature and pressure is constant throughout the system), we recover the Gibbs' phase rule. One particularly useful expression arises when considering binary solutions. [9] At constant P and T it becomes: