When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Harmonic function - Wikipedia

    en.wikipedia.org/wiki/Harmonic_function

    The descriptor "harmonic" in the name harmonic function originates from a point on a taut string which is undergoing harmonic motion.The solution to the differential equation for this type of motion can be written in terms of sines and cosines, functions which are thus referred to as harmonics.

  3. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  4. Harmonic (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_(mathematics)

    In mathematics, a number of concepts employ the word harmonic. The similarity of this terminology to that of music is not accidental: the equations of motion of vibrating strings, drums and columns of air are given by formulas involving Laplacians ; the solutions to which are given by eigenvalues corresponding to their modes of vibration.

  5. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

  6. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    The Riemann zeta function is defined for real > by the convergent series = = = + + +, which for = would be the harmonic series. It can be extended by analytic continuation to a holomorphic function on all complex numbers except x = 1 {\displaystyle x=1} , where the extended function has a simple pole .

  7. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The potential-energy function of a harmonic oscillator is =. Given an arbitrary potential-energy function V ( x ) {\displaystyle V(x)} , one can do a Taylor expansion in terms of x {\displaystyle x} around an energy minimum ( x = x 0 {\displaystyle x=x_{0}} ) to model the behavior of small perturbations from equilibrium.

  8. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.

  9. Harnack's inequality - Wikipedia

    en.wikipedia.org/wiki/Harnack's_inequality

    A harmonic function (green) over a disk (blue) is bounded from above by a function (red) that coincides with the harmonic function at the disk center and approaches infinity towards the disk boundary. Harnack's inequality applies to a non-negative function f defined on a closed ball in R n with radius R and centre x 0.