Search results
Results From The WOW.Com Content Network
Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water.Solutions of HF are colorless, acidic and highly corrosive.A common concentration is 49% (48-52%) but there are also stronger solutions (e.g. 70%) and pure HF has a boiling point near room temperature.
Other reaction products like H 2 O 2 or HO 2 remain minor. At the very high temperature of 3,000 °C (3,270 K; 5,430 °F) more than half of the water molecules are decomposed. At the very high temperature of 3,000 °C (3,270 K; 5,430 °F) more than half of the water molecules are decomposed.
The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed]
2 HOF → 2 HF + O 2. This reaction is catalyzed by water. [2] It was isolated in the pure form by passing F 2 gas over ice at −40 °C, rapidly collecting the HOF gas away from the ice, and condensing it: [2] F 2 + H 2 O → HOF + HF. The compound has been characterized in the solid phase by X-ray crystallography [1] as a bent molecule with
In chemistry, a phase-transfer catalyst or PTC is a catalyst that facilitates the transition of a reactant from one phase into another phase where reaction occurs. Phase-transfer catalysis is a special form of catalysis and can act through homogeneous catalysis or heterogeneous catalysis methods depending on the catalyst used.
At the interface between the phases (in the classical problem) the temperature is set to the phase change temperature. To close the mathematical system a further equation, the Stefan condition, is required. This is an energy balance which defines the position of the moving interface.
Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order , the Damköhler number for a convective flow system is defined as:
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".