Search results
Results From The WOW.Com Content Network
In mathematics, the term linear is used in two distinct senses for two different properties: . linearity of a function (or mapping);; linearity of a polynomial.; An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin.
In mathematics, the term linear function refers to two distinct but related notions: [1] In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2] For distinguishing such a linear function from the other concept, the term affine function is often used ...
The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [10] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space ...
In functional analysis, a branch of mathematics, a closed linear operator or often a closed operator is a linear operator whose graph is closed (see closed graph property). It is a basic example of an unbounded operator. The closed graph theorem says a linear operator between Banach spaces is a closed operator if and only if it is a bounded ...
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product, norm, or topology) and the linear functions defined on these spaces and suitably respecting these structures.
Every graph is the line graph of some hypergraph, but, given a fixed edge size k, not every graph is a line graph of some k-uniform hypergraph. A main problem is to characterize those that are, for each k ≥ 3. A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some ...
This is why very different techniques are employed when studying linear operators (and operators in general) in the infinite-dimensional case. The study of linear operators in the infinite-dimensional case is known as functional analysis (so called because various classes of functions form interesting examples of infinite-dimensional vector ...
SL – special linear group. SO – special orthogonal group. SOC – second order condition. Soln – solution. Sp – symplectic group. Sp – trace of a matrix, from the German "spur" used for the trace. sp, span – linear span of a set of vectors. (Also written with angle brackets.) Spec – spectrum of a ring. Spin – spin group.