When.com Web Search

  1. Ads

    related to: 3 circles in a line calculator math example

Search results

  1. Results From The WOW.Com Content Network
  2. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Descartes' theorem still applies when one of the circles is replaced by a straight line of zero curvature. If one of the three circles is replaced by a straight line tangent to the remaining circles, then its curvature is zero and drops out of equation (1). For instance, if =, then equation (1) can be factorized as [31]

  3. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements. [ 1 ]

  4. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Chord (geometry) Geometric line segment whose endpoints both lie on the curve. Common lines and line segments on a circle, including a chord in blue. A chord (from the Latin chorda, meaning "bowstring") of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions ...

  5. Borromean rings - Wikipedia

    en.wikipedia.org/wiki/Borromean_rings

    Borromean rings. In mathematics, the Borromean rings[a] are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in ...

  6. Miquel's theorem - Wikipedia

    en.wikipedia.org/wiki/Miquel's_theorem

    Miquel's theorem is a result in geometry, named after Auguste Miquel, [1] concerning the intersection of three circles, each drawn through one vertex of a triangle and two points on its adjacent sides. It is one of several results concerning circles in Euclidean geometry due to Miquel, whose work was published in Liouville's newly founded ...

  7. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    These two circles determine a pencil, meaning a line L in the P 3 of circles. If the equations of C 0 and C ∞ are f and g, respectively, then the points on L correspond to the circles whose equations are Sf + Tg, where [S : T] is a point of P 1. The points where L meets Z D are precisely the circles in the pencil that are tangent to D.

  8. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    Inversive geometry. In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.

  9. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Geometric meaning. In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. [1] Specifically, the power of a point with respect to a circle with center and radius is defined by.