When.com Web Search

  1. Ad

    related to: volume of triangular cone chart excel formula

Search results

  1. Results From The WOW.Com Content Network
  2. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    The volume of a regular icosahedron is obtained by calculating the volume of all pyramids with the base of triangular faces and the height with the distance from a triangular face's centroid to the center inside the regular icosahedron, the circumradius of a regular icosahedron; alternatively, it can be ascertained by slicing it off into two ...

  3. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    3D model of a cone. A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of the points on a base that is in a plane that ...

  4. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...

  5. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    Frustum. In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal. A right frustum is a right pyramid or a right cone ...

  6. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in - dimensional Euclidean space. [1]

  7. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    The disk-shaped cross-sectional area of the sphere is equal to the ring-shaped cross-sectional area of the cylinder part that lies outside the cone. If one knows that the volume of a cone is (), then one can use Cavalieri's principle to derive the fact that the volume of a sphere is , where is the radius.

  8. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  9. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.