When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    Hierarchical clustering dendrogram of the Iris dataset (using R). Source Hierarchical clustering and interactive dendrogram visualization in Orange data mining suite. ALGLIB implements several hierarchical clustering algorithms (single-link, complete-link, Ward) in C++ and C# with O(n²) memory and O(n³) run time.

  3. Dendrogram - Wikipedia

    en.wikipedia.org/wiki/Dendrogram

    A dendrogram is a diagram representing a tree. This diagrammatic representation is frequently used in different contexts: in hierarchical clustering, it illustrates the arrangement of the clusters produced by the corresponding analyses. [4] in computational biology, it shows the clustering of genes or samples, sometimes in the margins of heatmaps.

  4. Hierarchical clustering of networks - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering_of...

    Hierarchical clustering is one method for finding community structures in a network. The technique arranges the network into a hierarchy of groups according to a specified weight function. The data can then be represented in a tree structure known as a dendrogram. Hierarchical clustering can either be agglomerative or divisive depending on ...

  5. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    In statistics, Ward's method is a criterion applied in hierarchical cluster analysis. Ward's minimum variance method is a special case of the objective function approach originally presented by Joe H. Ward, Jr. [1] Ward suggested a general agglomerative hierarchical clustering procedure, where the criterion for choosing the pair of clusters to ...

  6. WPGMA - Wikipedia

    en.wikipedia.org/wiki/WPGMA

    The WPGMA algorithm constructs a rooted tree that reflects the structure present in a pairwise distance matrix (or a similarity matrix). At each step, the nearest two clusters, say i {\displaystyle i} and j {\displaystyle j} , are combined into a higher-level cluster i ∪ j {\displaystyle i\cup j} .

  7. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    v. t. e. Ordering points to identify the clustering structure (OPTICS) is an algorithm for finding density-based [1] clusters in spatial data. It was presented by Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel and Jörg Sander. [2] Its basic idea is similar to DBSCAN, [3] but it addresses one of DBSCAN's major weaknesses: the problem of ...

  8. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    Complete-linkage clustering is one of several methods of agglomerative hierarchical clustering. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster. The method is also known as farthest neighbour clustering.

  9. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    The method is also known as nearest neighbour clustering. The result of the clustering can be visualized as a dendrogram, which shows the sequence in which clusters were merged and the distance at which each merge took place. [3] Mathematically, the linkage function – the distance D(X,Y) between clusters X and Y – is described by the expression