Search results
Results From The WOW.Com Content Network
An example of secretomotor activity can be seen with the lacrimal gland, [1] which secretes the aqueous layer of the tear film. The lacrimal branch of the ophthalmic nerve (itself a branch of trigeminal nerve V1) supplies secretomotor innervation to the lacrimal gland, stimulating its secretion of the aqueous layer.
After a parotidectomy, the nerves from the Auriculotemporal Nerve that previously innervated the parotid gland can reattach to the sweat glands in the same region. The result is sweating along the cheek with the consumption of foods (Frey's syndrome). Treatment involves the application of an antiperspirant or glycopyrrolate to the cheek ...
Receives taste from the posterior 1/3 of the tongue, provides secretomotor innervation to the parotid gland, and provides motor innervation to the stylopharyngeus. Some sensation is also relayed to the brain from the palatine tonsils. This nerve is involved together with the vagus nerve in the gag reflex. X Vagus: Both sensory and motor
Preganglionic parasympathetic fibers to the submandibular ganglion, providing secretomotor innervation to two salivary glands: the submandibular gland and sublingual gland and to the vessels of the tongue, which when stimulated, cause a dilation of blood vessels of the tongue. Right chorda tympani nerve, viewed from lateral side
They produce vasodilator and secretomotor effects. Its sympathetic root is derived from the plexus on the middle meningeal artery. It contains post-ganglionic fibers arising in the superior cervical ganglion. The fibers pass through the ganglion without relay and reach the parotid gland via the auriculotemporal nerve. They are vasomotor in ...
Its parasympathetic root is derived from the nervus intermedius (a part of the facial nerve) through the greater petrosal nerve.. In the pterygopalatine ganglion, the preganglionic parasympathetic fibers from the greater petrosal branch of the facial nerve synapse with neurons whose postganglionic axons, vasodilator, and secretory fibers are distributed with the deep branches of the trigeminal ...
Brodmann mapped the human brain based on the varied cellular structure across the cortex and identified 52 distinct regions, which he numbered 1 to 52. These regions, or Brodmann areas, correspond with diverse functions including sensation, motor control, and cognition. [1]
Preganglionic fibers en route to the pterygopalatine ganglion (destined to ultimately innervate the lacrimal gland and the mucosal glands of the nose, palate, and pharynx) subsequently form the greater petrosal nerve, whereas those en route to the submandibular ganglion (destined to ultimately innervate the submandibular and sublingual salivary glands) subsequently form the chorda tympani.