Search results
Results From The WOW.Com Content Network
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
A III-V compound semiconductor is an alloy that contains elements from group III and group V of the periodic table. [1 Pages in category "III-V semiconductors" ...
Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.
Many arsenides of the group 13 elements (group III) are valuable semiconductors. Gallium arsenide (GaAs) features isolated arsenic centers with a zincblende structure (wurtzite structure can eventually also form in nanostructures), and with predominantly covalent bonding – it is a III–V semiconductor.
Indium arsenide antimonide, also known as indium antimonide arsenide or InAsSb (In As 1-x Sb x), is a ternary III-V semiconductor compound. It can be considered as an alloy between indium arsenide (InAs) and indium antimonide (InSb). The alloy can contain any ratio between arsenic and antimony.
Gallium indium antimonide, also known as indium gallium antimonide, GaInSb, or InGaSb (Ga x In 1-x Sb), is a ternary III-V semiconductor compound. It can be considered as an alloy between gallium antimonide and indium antimonide. The alloy can contain any ratio between gallium and indium. GaInSb refers generally to any composition of the alloy.
Indium antimonide (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow-gap semiconductor material from the III-V group used in infrared detectors, including thermal imaging cameras, FLIR systems, infrared homing missile guidance systems, and in infrared astronomy.
Aluminium antimonide (AlSb) is a semiconductor of the group III-V family containing aluminium and antimony. The lattice constant is 0.61 nm. The indirect bandgap is approximately 1.6 eV at 300 K, whereas the direct band gap is 2.22 eV. Its electron mobility is 200 cm 2 ·V −1 ·s −1 and hole mobility 400 cm 2 ·V −1 ·s −1 at 300 K.