When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    A kernel smoother is a statistical technique to estimate a real valued function: as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter.

  3. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  4. Scale space implementation - Wikipedia

    en.wikipedia.org/wiki/Scale_space_implementation

    The symmetric 3-kernel [t/2, 1-t, t/2], for t ≤ 0.5 smooths to a scale of t using a pair of real zeros at Z < 0, and approaches the discrete Gaussian in the limit of small t. In fact, with infinitesimal t , either this two-zero filter or the two-pole filter with poles at Z = t /2 and Z = 2/ t can be used as the infinitesimal generator for the ...

  5. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    Low-rank matrix approximations are essential tools in the application of kernel methods to large-scale learning problems. [1]Kernel methods (for instance, support vector machines or Gaussian processes [2]) project data points into a high-dimensional or infinite-dimensional feature space and find the optimal splitting hyperplane.

  6. Scale space - Wikipedia

    en.wikipedia.org/wiki/Scale_space

    For temporal smoothing in real-time situations, one can instead use the temporal kernel referred to as the time-causal limit kernel, [71] which possesses similar properties in a time-causal situation (non-creation of new structures towards increasing scale and temporal scale covariance) as the Gaussian kernel obeys in the non-causal case. The ...

  7. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    Demonstration of density estimation using Kernel density estimation: The true density is a mixture of two Gaussians centered around 0 and 3, shown with a solid blue curve. In each frame, 100 samples are generated from the distribution, shown in red. Centered on each sample, a Gaussian kernel is drawn in gray.

  8. Mean shift - Wikipedia

    en.wikipedia.org/wiki/Mean_shift

    where are the input samples and () is the kernel function (or Parzen window). is the only parameter in the algorithm and is called the bandwidth. This approach is known as kernel density estimation or the Parzen window technique. Once we have computed () from the equation above, we can find its local maxima using gradient ascent or some other optimization technique. The problem with this ...

  9. Difference of Gaussians - Wikipedia

    en.wikipedia.org/wiki/Difference_of_Gaussians

    When utilized for image enhancement, the difference of Gaussians algorithm is typically applied when the size ratio of kernel (2) to kernel (1) is 4:1 or 5:1. In the example images, the sizes of the Gaussian kernels employed to smooth the sample image were 10 pixels and 5 pixels.