When.com Web Search

  1. Ad

    related to: nanosiemens to ns conversion equation pdf form

Search results

  1. Results From The WOW.Com Content Network
  2. Non-dimensionalization and scaling of the Navier–Stokes equations

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The general form of the equations of motion is not "ready for use", the stress tensor is still unknown so that more information is needed; this information is normally some knowledge of the viscous behavior of the fluid. For different types of fluid flow this results in specific forms of the Navier–Stokes equations.

  4. Discretization of Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Discretization_of_Navier...

    Discretization of the Navier–Stokes equations of fluid dynamics is a reformulation of the equations in such a way that they can be applied to computational fluid dynamics. Several methods of discretization can be applied: Finite volume method; Finite elements method; Finite difference method

  5. Siemens (unit) - Wikipedia

    en.wikipedia.org/wiki/Siemens_(unit)

    The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.

  6. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes momentum equation can be derived as a particular form of the Cauchy momentum equation, whose general convective form is: = +. By setting the Cauchy stress tensor σ {\textstyle {\boldsymbol {\sigma }}} to be the sum of a viscosity term τ {\textstyle {\boldsymbol {\tau }}} (the deviatoric stress ) and a pressure term − p I ...

  7. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    Also, direct numerical simulations are useful in the development of turbulence models for practical applications, such as sub-grid scale models for large eddy simulation (LES) and models for methods that solve the Reynolds-averaged Navier–Stokes equations (RANS). This is done by means of "a priori" tests, in which the input data for the model ...

  8. Nondimensionalization - Wikipedia

    en.wikipedia.org/wiki/Nondimensionalization

    The general nth order linear differential equation with constant coefficients has the form: + + … + + = = () = (). The function f ( t ) is known as the forcing function . If the differential equation only contains real (not complex) coefficients, then the properties of such a system behaves as a mixture of first and second order systems only.

  9. Conductivity (electrolytic) - Wikipedia

    en.wikipedia.org/wiki/Conductivity_(electrolytic)

    The conversion of conductivity (in μS/cm) to the total dissolved solids (in mg/kg) depends on the chemical composition of the sample and can vary between 0.54 and 0.96. Typically, the conversion is done assuming that the solid is sodium chloride; 1 μS/cm is then equivalent to about 0.64 mg of NaCl per kg of water.