Search results
Results From The WOW.Com Content Network
One square metre of the Earth receives about 1.4 kilojoules of solar radiation every second in full daylight. [20] A human in a sprint has approximately 3 kJ of kinetic energy, [21] while a cheetah in a 122 km/h (76 mph) sprint has approximately 20 kJ. [22] One watt-hour, of electricity or any other form of energy, is 3.6 kJ. megajoule
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
In monatomic gases (like argon) at room temperature and constant volume, volumetric heat capacities are all very close to 0.5 kJ⋅K −1 ⋅m −3, which is the same as the theoretical value of 3 / 2 RT per kelvin per mole of gas molecules (where R is the gas constant and T is temperature). As noted, the much lower values for gas heat ...
Therefore, if such systems have equal temperatures, they are at thermal equilibrium. However, this equilibrium is stable only if the systems have positive heat capacities. For such systems, when heat flows from a higher-temperature system to a lower-temperature one, the temperature of the first decreases and that of the latter increases, so ...
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
Natural gas is often sold in units of energy content or by volume. Common units for selling by energy content are joules or therms. One therm is equal to about 1,055 megajoules. Common units for selling by volume are cubic metre or cubic feet. Natural gas in the US is sold in therms or 100 cubic feet (100 ft 3). In Australia, natural gas is ...
Energy density is the amount of energy per mass or volume of food. The energy density of a food can be determined from the label by dividing the energy per serving (usually in kilojoules or food calories) by the serving size (usually in grams, milliliters or fluid ounces).
Graph of temperature of phases of water heated from −100 °C to 200 °C – the dashed line example shows that melting and heating 1 kg of ice at −50 °C to water at 40 °C needs 600 kJ. The specific heat capacities of gases can be measured at constant volume, by enclosing the sample in a rigid container.