Search results
Results From The WOW.Com Content Network
Endoscopic optical coherence tomography, also intravascular optical coherence tomography is a catheter-based imaging application of optical coherence tomography (OCT). [1] It is capable of acquiring high-resolution images from inside a blood vessel using optical fibers and laser technology .
Endomicroscopy is a technique for obtaining histology-like images from inside the human body in real-time, [1] [2] [3] a process known as ‘optical biopsy’. [4] [5] It generally refers to fluorescence confocal microscopy, although multi-photon microscopy and optical coherence tomography have also been adapted for endoscopic use.
Optical coherence tomogram of a fingertip. It is possible to observe the sweat glands, having "corkscrew appearance" Interferometric reflectometry of biological tissue, especially of the human eye using short-coherence-length light (also referred to as partially-coherent, low-coherence, or broadband, broad-spectrum, or white light) was investigated in parallel by multiple groups worldwide ...
Doppler Optical Coherence Tomography is an extension of OCT, where it combines the Doppler effect principle to achieve high resolution tomographic images in biological tissues. And because of its high resolution and velocity sensitivity, there are many applications in the medical field. The basic phenomenon of Doppler OCT can be explained below.
The optical system consists of complex microscopic optical instruments, which are difficult to manufacture and assemble. [2] Therefore, the tool is expensive. [3] CLE is mostly used in combination with other techniques instead of replacing conventional endoscopy with biopsy. [7] CLE can only serve as a complementary to the traditional biopsy.
In physics, coherence theory is the study of optical effects arising from partially coherent light and radio sources. Partially coherent sources are sources where the coherence time or coherence length are limited by bandwidth, by thermal noise, or by other effect. Many aspects of modern coherence theory are studied in quantum optics.
Angle-resolved low-coherence interferometry (a/LCI) is an emerging [when?] biomedical imaging technology which uses the properties of scattered light to measure the average size of cell structures, including cell nuclei. The technology shows promise as a clinical tool for in situ detection of dysplastic, or precancerous tissue.
It is believed [by whom?] that the concept of moving an optical fiber to produce 2D images with confocal sectioning and laser illumination was first proposed for endoscopic applications by Giniunas et al., in 1993. A major advancement of the SFE is rapid scanning and generation of high-quality images using an amplitude-modulated resonating fiber.