Search results
Results From The WOW.Com Content Network
Ammonium sulfate is an inorganic salt with a high solubility that disassociates into ammonium (NH + 4) and sulfate (SO 2− 4) in aqueous solutions. [1] Ammonium sulfate is especially useful as a precipitant because it is highly soluble, stabilizes protein structure, has a relatively low density, is readily available, and is relatively inexpensive.
Ammonium sulfate precipitation is a common method for protein purification by precipitation. As the ionic strength of a solution increases, the solubility of proteins in that solution decreases. Being extremely soluble in water, ammonium sulfate can "salt out" (precipitate) proteins from aqueous solutions.
Salting out (also known as salt-induced precipitation, salt fractionation, anti-solvent crystallization, precipitation crystallization, or drowning out) [1] is a purification technique that utilizes the reduced solubility of certain molecules in a solution of very high ionic strength.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
z i is the ion charge of the salt and c i is the salt concentration. The ideal salt for protein precipitation is most effective for a particular amino acid composition, inexpensive, non-buffering, and non-polluting. The most commonly used salt is ammonium sulfate. There is a low variation in salting out over temperatures 0 °C to 30 °C.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure.
Ammonium sulfate is the traditional kosmotropic salt for the salting out of protein from an aqueous solution. Kosmotropes are used to induce protein aggregation in pharmaceutical preparation and at various stages of protein extraction and purification.
Precipitation in solids is routinely used to synthesize nanoclusters. [12] In metallurgy, precipitation from a solid solution is also a way to strengthen alloys. Precipitation of ceramic phases in metallic alloys such as zirconium hydrides in zircaloy cladding of nuclear fuel pins can also render metallic alloys brittle and lead to their ...