When.com Web Search

  1. Ad

    related to: robertson seymour theorem calculator statistics table

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs. Although the RobertsonSeymour theorem extends these results to arbitrary minor-closed graph families, it is not a complete substitute for these results, because it does not provide an explicit description of the obstruction set for any family.

  3. Friedman's SSCG function - Wikipedia

    en.wikipedia.org/wiki/Friedman's_SSCG_function

    The RobertsonSeymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. Then, by applying KÅ‘nig's lemma on the tree of such sequences under extension, for each value of k there is a sequence with maximal length.

  4. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]

  5. Petersen family - Wikipedia

    en.wikipedia.org/wiki/Petersen_family

    As the RobertsonSeymour theorem shows, many important families of graphs can be characterized by a finite set of forbidden minors: for instance, according to Wagner's theorem, the planar graphs are exactly the graphs that have neither the complete graph K 5 nor the complete bipartite graph K 3,3 as minors.

  6. Neil Robertson (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Neil_Robertson_(mathematician)

    Robertson has won the Fulkerson Prize three times, in 1994 for his work on the Hadwiger conjecture, in 2006 for the RobertsonSeymour theorem, and in 2009 for his proof of the strong perfect graph theorem. [11] He also won the Pólya Prize (SIAM) in 2004, the OSU Distinguished Scholar Award in 1997, and the Waterloo Alumni Achievement Medal ...

  7. Linkless embedding - Wikipedia

    en.wikipedia.org/wiki/Linkless_embedding

    Therefore, by the RobertsonSeymour theorem, the linklessly embeddable graphs have a forbidden graph characterization as the graphs that do not contain any of a finite set of minors. [ 3 ] The set of forbidden minors for the linklessly embeddable graphs was identified by Sachs (1983) : the seven graphs of the Petersen family are all minor ...

  8. Apex graph - Wikipedia

    en.wikipedia.org/wiki/Apex_graph

    Robertson's example of a non-YΔY-reducible apex graph. A connected graph is YΔY-reducible if it can be reduced to a single vertex by a sequence of steps, each of which is a Δ-Y or Y-Δ transform , the removal of a self-loop or multiple adjacency, the removal of a vertex with one neighbor, and the replacement of a vertex of degree two and its ...

  9. P (complexity) - Wikipedia

    en.wikipedia.org/wiki/P_(complexity)

    For example, the RobertsonSeymour theorem guarantees that there is a finite list of forbidden minors that characterizes (for example) the set of graphs that can be embedded on a torus; moreover, Robertson and Seymour showed that there is an O(n 3) algorithm for determining whether a graph has a given graph as a minor.