Search results
Results From The WOW.Com Content Network
This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field .
From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current.
If circuit 2 is an audio system and circuit 1 has large AC currents flowing in it, the interference may be heard as a 50 or 60 Hz hum in the speakers. Also, both circuits have voltage V G {\displaystyle \scriptstyle V_{G}} on their grounded parts that may be exposed to contact, possibly presenting a shock hazard.
Induction causes a separation of the charges inside the electroscope's metal rod, so that the top terminal gains a net charge of opposite polarity to that of the object, while the gold leaves gain a charge of the same polarity. Since both leaves have the same charge, they repel each other and spread apart.
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
This field causes an electric current to flow in the wire loop by electromagnetic induction. Magnetic fields can also be used to make electric currents. When a changing magnetic field is applied to a conductor, an electromotive force (EMF) is induced, [ 21 ] : 1004 which starts an electric current, when there is a suitable path.
A cross section through a linear motor placed above a thick aluminium slab. As the linear induction motor's field pattern sweeps to the left, eddy currents are left behind in the metal and this causes the field lines to lean. In a varying magnetic field, the induced currents exhibit diamagnetic-like repulsion effects.
An inductor is a component consisting of a wire or other conductor shaped to increase the magnetic flux through the circuit, usually in the shape of a coil or helix, with two terminals. Winding the wire into a coil increases the number of times the magnetic flux lines link the circuit, increasing the field and thus the inductance. The more ...