Search results
Results From The WOW.Com Content Network
Homologous sequences are paralogous if they were created by a duplication event within the genome. For gene duplication events, if a gene in an organism is duplicated, the two copies are paralogous. They can shape the structure of whole genomes and thus explain genome evolution to a large extent. Examples include the Homeobox genes in animals.
Sequences are either homologous or not. [3] This involves that the term "percent homology" is a misnomer. [4] As with morphological and anatomical structures, sequence similarity might occur because of convergent evolution, or, as with shorter sequences, by chance, meaning
Homology model of the DHRS7B protein created with Swiss-model and rendered with PyMOL. Homology modeling, also known as comparative modeling of protein, refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental three-dimensional structure of a related homologous protein (the "template").
Homologous structures - structures (body parts/anatomy) which are similar in different species because the species have common descent and have evolved, usually divergently, from a shared ancestor. They may or may not perform the same function. An example is the forelimb structure shared by cats and whales.
Diagrams that show the development of male and female organs from a common precursor. Sperm ducts and fallopian tubes are not homologous, as the sperm ducts originate from the Wolffian ducts, whereas the fallopian tubes originate from the Müllerian ducts. Homologous structures in the external genitalia
All vertebrate forelimbs are homologous, meaning that they all evolved from the same structures. For example, the flipper of a turtle or of a dolphin, the arm of a human, the foreleg of a horse, and the wings of both bats and birds are ultimately homologous, despite the large differences between them. [1]
Homologous recombination, genetic recombination in which nucleotide sequences are exchanged between molecules of DNA; Homologous desensitization, a receptor decreases its response to a signalling molecule when that agonist is in high concentration; Homology modeling, a method of protein structure prediction
One can optionally endow chain complexes with additional structure, for example by additionally taking the groups to be modules over a coefficient ring, and taking the boundary maps to be -module homomorphisms, resulting in homology groups that are also quotient modules.