Search results
Results From The WOW.Com Content Network
Brightness is the term for the subjective impression of the objective luminance measurement standard (see Objectivity (science) § Objectivity in measurement for the importance of this contrast). The SI unit for luminance is candela per square metre (cd/m 2). A non-SI term for the same unit is the nit.
When appearing on light bulb packages, brightness means luminous flux, while in other contexts it means luminance. [5] Luminous flux is the total amount of light coming from a source, such as a lighting device. Luminance, the original meaning of brightness, is the amount of light per solid angle coming from an area, such as the sky.
N bb is a fudge factor that is normally 1; it's only of concern when comparing brightness judgements based on slightly different reference whites. Here Y is the relative luminance compared to white on a scale of 0 to 1 and L A is the average luminance of the adapting visual field as a whole, measured in cd/m 2.
An illustration of light sources from magnitude 1 to 3.5, in 0.5 increments. In astronomy, magnitude is a measure of the brightness of an object, usually in a defined passband. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus. Magnitude values do not have a unit.
Contrast is the difference in luminance or color that makes an object (or its representation in an image or display) visible against a background of different luminance or color. [1] The human visual system is more sensitive to contrast than to absolute luminance; thus, we can perceive the world similarly despite significant changes in ...
Factor ()Multiple Value Item 0 0 lux 0 lux Absolute darkness 10 −4: 100 microlux 100 microlux: Starlight overcast moonless night sky [1]: 140 microlux: Venus at brightest [1]: 200 microlux
The difference between brightness and lightness is that the brightness is the intensity of the object independent of the light source. Lightness is the brightness of the object in respect to the light reflecting on it. This is important because the Helmholtz–Kohlrausch effect is a measure of the ratio between the two. [3]
HSL (hue, saturation, lightness or luminance), also known as HSI (hue, saturation, intensity) or HSD (hue, saturation, darkness), is quite similar to HSV, with "lightness" replacing "brightness". The difference is that a perfectly light color in HSL is pure white; but a perfectly bright color in HSV is analogous to shining a white light on a ...