Search results
Results From The WOW.Com Content Network
If n is a negative integer, is defined only if x has a multiplicative inverse. [35] In this case, the inverse of x is denoted x −1, and x n is defined as (). Exponentiation with integer exponents obeys the following laws, for x and y in the algebraic structure, and m and n integers:
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. 1 / 8 = 1 / 2 3 .
By comparison, powers of two with negative exponents are fractions: for positive integer n, 2 −n is one half multiplied by itself n times. Thus the first few negative powers of 2 are 1 / 2 , 1 / 4 , 1 / 8 , 1 / 16 , etc.
2.2.3 Generalization to negative integer exponents. 2.3 Generalization to rational exponents. 2.3.1 Proof by chain rule. ... Partial fractions (Heaviside's method ...
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
Roots are a special type of exponentiation using a fractional exponent. For example, the square root of a number is the same as raising the number to the power of 1 2 {\displaystyle {\tfrac {1}{2}}} and the cube root of a number is the same as raising the number to the power of 1 3 {\displaystyle {\tfrac {1}{3}}} .
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f.The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.