Search results
Results From The WOW.Com Content Network
The expression of genes encoded in DNA begins by transcribing the gene into RNA, a second type of nucleic acid that is very similar to DNA, but whose monomers contain the sugar ribose rather than deoxyribose. RNA also contains the base uracil in place of thymine. RNA molecules are less stable than DNA and are typically single-stranded.
The gene expression patterns that define cell identity are inherited through cell division. [1] This process is called epigenetic regulation. DNA methylation is reliably inherited through the action of maintenance methylases that modify the nascent DNA strand generated by replication. [1] In mammalian cells, DNA methylation is the primary ...
Genes are copied each time a cell divides into two new cells. The process that copies DNA is called DNA replication. [8] It is through a similar process that a child inherits genes from its parents when a copy from the mother is mixed with a copy from the father.
An inducible gene is a gene whose expression is either responsive to environmental change or dependent on the position in the cell cycle. Any step of gene expression may be modulated, from the DNA-RNA transcription step to post-translational modification of a protein.
DNA damages arise in each cell, every day, with the number of damages in each cell reaching tens to hundreds of thousands, and such DNA damages can impede primary transcription. [8] The process of gene expression itself is a source of endogenous DNA damages resulting from the susceptibility of single-stranded DNA to damage. [8]
The code is read by copying stretches of DNA into the related nucleic acid RNA in a process called transcription. Within cells, DNA is organized into long sequences called chromosomes. During cell division these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes.
The entire process is called gene expression. In translation, messenger RNA (mRNA) is decoded in a ribosome, outside the nucleus, to produce a specific amino acid chain, or polypeptide . The polypeptide later folds into an active protein and performs its functions in the cell.
The transferred DNA (called T-DNA) is piloted to the plant cell nucleus by nuclear localization signals present in the Agrobacterium protein VirD2, which is covalently attached to the end of the T-DNA at the Right border (RB). Exactly how the T-DNA is integrated into the host plant genomic DNA is an active area of plant biology research.