Search results
Results From The WOW.Com Content Network
The accumulation of acetyl-CoA in turn produces excess ketone bodies through ketogenesis. [11] The result is a rate of ketone production higher than the rate of ketone disposal, and a decrease in blood pH. [12] In extreme cases the resulting acetone can be detected in the patient's breath as a faint, sweet odor.
Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.
n/a n/a Ensembl n/a n/a UniProt n a n/a RefSeq (mRNA) n/a n/a RefSeq (protein) n/a n/a Location (UCSC) n/a n/a PubMed search n/a n/a Wikidata View/Edit Human Hydroxymethylglutaryl-CoA lyase HMG-CoA lyase dimer, Human Identifiers EC no. 4.1.3.4 CAS no. 9030-83-5 Databases IntEnz IntEnz view BRENDA BRENDA entry ExPASy NiceZyme view KEGG KEGG entry MetaCyc metabolic pathway PRIAM profile PDB ...
Acetoacetate decarboxylase (AAD or ADC) is an enzyme (EC 4.1.1.4) involved in both the ketone body production pathway in humans and other mammals, and solventogenesis in bacteria. Acetoacetate decarboxylase plays a key role in solvent production by catalyzing the decarboxylation of acetoacetate, yielding acetone and carbon dioxide. [1]
Summary of amino acid catabolism. A ketogenic amino acid is an amino acid that can be degraded directly into acetyl-CoA, which is the precursor of ketone bodies and myelin, particularly during early childhood, when the developing brain requires high rates of myelin synthesis. [1]
Acetoacetyl CoA is the precursor of HMG-CoA in the mevalonate pathway, which is essential for cholesterol biosynthesis. It also takes a similar role in the ketone bodies synthesis (ketogenesis) pathway of the liver. [1] In the ketone bodies digestion pathway (in the tissue), it is no longer associated with having HMG-CoA as a product or as a ...
When starved, the ketone levels in the shark bodies increases, especially after long-term starvation. Once they are fed, the presence of ketone bodies in the body declines rapidly. The rapid decline is correlated with significant elevations of BHBDH activity, which points towards this enzyme being very important to process ketone bodies. [5]
The ketone bodies are released by the liver into the blood. All cells with mitochondria can take ketone bodies up from the blood and reconvert them into acetyl-CoA, which can then be used as fuel in their citric acid cycles, as no other tissue can divert its oxaloacetate into the gluconeogenic pathway in the way that the