Search results
Results From The WOW.Com Content Network
Statistics, when used in a misleading fashion, can trick the casual observer into believing something other than what the data shows. That is, a misuse of statistics occurs when a statistical argument asserts a falsehood. In some cases, the misuse may be accidental. In others, it is purposeful and for the gain of the perpetrator.
The paradox can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling [4] [5] (e.g., through cluster analysis [6]). Simpson's paradox has been used to illustrate the kind of misleading results that the misuse of statistics can generate. [7] [8]
In statistics, a misleading graph, also known as a distorted graph, is a graph that misrepresents data, constituting a misuse of statistics and with the result that an incorrect conclusion may be derived from it.
It has become one of the best-selling statistics books in history, with over one and a half million copies sold in the English-language edition. [1] It has also been widely translated. Themes of the book include "Correlation does not imply causation" and "Using random sampling." It also shows how statistical graphs can be used to distort reality.
The source of the statistics is very important. The first questions to ask when reading statistical research results is who did the study and why. The source of the statistics is very important.
Data analysts can take various measures at each stage of the process to reduce the impact of statistical bias in their work. Understanding the source of statistical bias can help to assess whether the observed results are close to actuality. Issues of statistical bias has been argued to be closely linked to issues of statistical validity. [1]
According to Bohn, however, the statistics can be misleading. Violence reached unprecedented peaks in the wake of the COVID-19 pandemic, which saw a proliferation of guns in U.S. households ...
The origin of the phrase "Lies, damned lies, and statistics" is unclear, but Mark Twain attributed it to Benjamin Disraeli [1] "Lies, damned lies, and statistics" is a phrase describing the persuasive power of statistics to bolster weak arguments, "one of the best, and best-known" critiques of applied statistics. [2]