Search results
Results From The WOW.Com Content Network
The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
For example, it is used to calculate flow through circular and non-circular tubes in order to examine flow conditions (i.e., the Reynolds number). In those cases, the characteristic length is the diameter of the pipe or, in case of non-circular tubes, its hydraulic diameter D h {\displaystyle D_{h}} :
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
In this expression for Reynolds number, the characteristic length D is taken to be the hydraulic diameter of the pipe, which, for a cylindrical pipe flowing full, equals the inside diameter. In Figures 1 and 2 of friction factor versus Reynolds number, the regime Re < 2000 demonstrates laminar flow; the friction factor is well represented by ...
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
In the rough pipe domain, friction loss is dominated by the relative roughness and is insensitive to Reynolds number. In the transition domain, friction loss is sensitive to both. For Reynolds numbers 2000 < Re < 4000, the flow is unstable, varying with time as vortices within the flow form and vanish randomly.