Ads
related to: factoring exponents algebra calculator
Search results
Results From The WOW.Com Content Network
In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property , a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials .
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [22]
The exponent on an indeterminate in a term is called the degree of that indeterminate in that term; the degree of the term is the sum of the degrees of the indeterminates in that term, and the degree of a polynomial is the largest degree of any term with nonzero coefficient. [8]
Factor the b i and generate exponent vectors mod 2 for each one. Use linear algebra to find a subset of these vectors which add to the zero vector. Multiply the corresponding a i together and give the result mod n the name a; similarly, multiply the b i together which yields a B-smooth square b 2.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.
The SNFS works as follows. Let n be the integer we want to factor. As in the rational sieve, the SNFS can be broken into two steps: First, find a large number of multiplicative relations among a factor base of elements of Z/nZ, such that the number of multiplicative relations is larger than the number of elements in the factor base.
In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method.The word FOIL is an acronym for the four terms of the product: