Search results
Results From The WOW.Com Content Network
Telomeres at the end of a chromosome. The relationship between telomeres and longevity and changing the length of telomeres is one of the new fields of research on increasing human lifespan and even human immortality. [1] [2] Telomeres are sequences at the ends of chromosomes that shorten with each cell division and determine the lifespan of ...
Telomerase, also called terminal transferase, [1] is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most eukaryotes. Telomeres protect the end of the chromosome from DNA damage or from fusion with neighbouring ...
A telomere (/ ˈ t ɛ l ə m ɪər, ˈ t iː l ə-/; from Ancient Greek τέλος (télos) 'end' and μέρος (méros) 'part') is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes.
This problem makes eukaryotic cells unable to copy the last few bases on the 3' end of the template DNA strand, leading to chromosome—and, therefore, telomere—shortening every S phase. [2] Measurements of telomere lengths across cell types at various ages suggest that this gradual chromosome shortening results in a gradual reduction in ...
Alexey Matveyevich Olovnikov (Russian: Алексей Матвеевич Оловников; 10 October 1936 – 6 December 2022) was a Russian biologist.Among other things, in 1971, he was the first to recognize the problem of telomere shortening, to predict the existence of telomerase, and to suggest the telomere hypothesis of aging and the relationship of telomeres to cancer.
An enzyme called telomerase elongates telomeres in gametes and stem cells. [12] Telomerase deficiency in humans has been linked to several aging-related diseases related to loss of regenerative capacity of tissues. [13] It has also been shown that premature aging in telomerase-deficient mice is reverted when telomerase is reactivated. [14]
This is known as the end replication problem. [1] The end replication problem is handled in eukaryotic cells by telomere regions and telomerase. Telomeres extend the 3' end of the parental chromosome beyond the 5' end of the daughter strand. This single-stranded DNA structure can act as an origin of replication that recruits telomerase.
Alternative Lengthening of Telomeres (also known as "ALT") is a telomerase-independent mechanism by which cancer cells avoid the degradation of telomeres.. At each end of the chromosomes of most eukaryotic cells, there is a telomere: a region of repetitive nucleotide sequences which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes.