Search results
Results From The WOW.Com Content Network
The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two ...
In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square.
Regular pentagon (n = 5) with side s, circumradius R and apothem a Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6.
A parallelogram has rotational symmetry of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of reflectional symmetry then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a square.
A 2-dimensional cube is a square, so the slimness factor of a square is 1 (since its smallest enclosing square is the same as its largest enclosed disk). The slimness factor of a 10-by-1 rectangle is 10. The slimness factor of a circle is √2. Hence, by this definition, a square is 1-fat but a disk and a 10×1 rectangle are not 1-fat.
The rhombus has a square as a special case, and is a special case of a kite and parallelogram.. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length.
For example, in a rectangle, every maximal square not touching one of the shorter sides is a separator. A continuator square is a square s in a polygon P such that the intersection between the boundary of s and the boundary of P is continuous. A maximal continuator is always a corner square. Moreover, a maximal continuator always contains a knob.
It is tempting to attempt to solve the inscribed square problem by proving that a special class of well-behaved curves always contains an inscribed square, and then to approximate an arbitrary curve by a sequence of well-behaved curves and infer that there still exists an inscribed square as a limit of squares inscribed in the curves of the sequence.